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Abstract	
During	the	2017	NBA	playoffs,	Celtics	coach	Brad	Stevens	was	faced	with	a	difficult	decision	
when	defending	against	the	Cavaliers:	``Do	you	double	and	risk	giving	up	easy	shots,	or	stay	at	
home	and	do	the	best	you	can?"1		It's	a	tough	call,	but	finding	a	good	defensive	strategy	that	
effectively	incorporates	doubling	can	make	a	difference	in	the	NBA.	In	this	paper,	we	analyze	
double	teaming	in	the	NBA,	quantifying	the	trade-off	between	risk	and	reward.	Using	player	
trajectory	data	pertaining	to	over	643,000	possessions,	we	identified	when	the	ball	handler	was	
double	teamed.	Given	these	data	and	the	corresponding	outcome	(i.e.,	was	the	defense	
successful),	we	used	deep	reinforcement	learning	to	estimate	the	quality	of	the	defensive	actions.	
We	present	qualitative	and	quantitative	results	summarizing	our	learned	defensive	strategy	for	
defending.	We	show	that	our	policy	value	estimates	are	predictive	of	points	per	possession	and	
win	percentage.	Overall,	the	proposed	framework	represents	a	step	toward	a	more	
comprehensive	understanding	of	defensive	strategies	in	the	NBA.	

1 Introduction	
In	basketball,	most	defensive	metrics	focus	on	discrete	and	sporadic	events,	e.g.,	blocked	shots,	
steals,	and	deflected	passes.	However,	a	good	defensive	play	embodies	much	more	than	such	
snapshots	capture	[2,	7].	For	example,	throughout	a	possession,	a	good	defense	might	force	a	player	
into	a	poor	shot	location,	or	force	the	ball	handler	to	take	a	series	of	sub-optimal	actions.	In	this	
work,	we	quantitatively	measure	defensive	impact	by	studying	the	use	and	effectiveness	of	double	
teaming	in	the	NBA.	

When	used	judiciously,	the	double	team	can	slow	strong	offensive	players.	For	example,	in	Game	4	
of	the	2015	NBA	finals,	the	Warriors	held	LeBron	to	only	20	points	and	8	assists	by	effectively	
double	teaming	him.	At	the	same	time,	doubling	against	such	players	can	be	risky.	Doubling	one	
player	leaves	another	player	open.	How	to	balance	this	trade-off	is	an	important	question	in	the	
NBA	and	one	that	can	depend	on	many	different	factors.	According	to	Andre	Iguodala,	LeBron's	
primary	defender,	“A	guy	like	LeBron	who	can	pass	the	ball	the	way	he	can,	you’ve	got	to	see	where	
his	eyes	are.	If	he	can	see	the	whole	floor,	it’s	tough	to	double	a	guy	like	that.”2	Effective	double	
teaming	involves	reasoning	over	the	entire	court	configuration	(e.g.,	where	and	who	the	players	
are)	and	anticipating	the	ball	handler's	next	move.	One’s	double	teaming	strategy	must	account	for	
the	offensive	strategy	of	the	opponent.	

To	characterize	the	effect	of	doubling	in	the	NBA,	we	studied	player	tracking	data	from	643,147	
possessions.	Using	a	rule-based	action	detector,	we	assess	how	the	double	team	is	used	by	NBA	

																																																								
1	cited	from	http://www.espn.com/nba/story/_/id/19407546/boston-celtics-coach-brad-stevens-says-team-risk-
double-teaming-cleveland-cavaliers-lebron-james	
2	cited	from	http://nba.nbcsports.com/2015/06/13/golden-state-and-the-art-of-double-teaming-lebron-james/	
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defenses	and	identify	situations	when	it	is	most	effective.	Building	on	this	initial	analysis,	we	
propose	an	approach	for	learning	a	defensive	strategy	for	when	and	where	to	double	team.	More	
specifically,	we	consider	a	reinforcement	learning	(RL)	framework,	in	which	we	quantify	the	
relationship	between	the	court	configuration	(i.e.,	state),	the	decision	to	double	team	and	whom	to	
leave	open	(i.e.,	action),	and	the	outcome	in	terms	of	points	per	possession	(i.e.,	reward).	To	deal	
with	the	infinite	number	of	court	configurations,	we	use	deep	RL	with	a	convolutional	neural	
network	architecture,	we	call	NothingButNet	(NBNet),	designed	specifically	for	the	task.	We	train	
our	network	to	learn	a	mapping	from	state	and	actions	to	expected	cumulative	reward.	From	this	
mapping,	one	can	construct	a	policy	by	selecting	the	action	that	maximizes	expected	reward.		

We	evaluate	the	proposed	approach	on	data	from	the	three	most	recent	seasons	(including	the	
playoffs).	We	compare	the	learned	strategy	against	the	actual	strategies	used.	We	found	that	our	
network’s	estimate	of	state-action	values	had	a	significant	correlation	with	possession	outcomes	on	
a	held-out	test	set	(p<0.001)	and	had	appeared	to	correlate	with	overall	win	percentage.		

Others	have	used	reinforcement	learning	to	study	the	effect	that	field	goal	attempts	have	on	
subsequent	3-pt	shot	attempts	[11],	and	have	used	neural	networks	for	play	classification	[15].	In	
soccer,	recent	work	has	looked	at	leveraging	imitation	learning	to	simulate	the	outcome	of	different	
defensive	positions	[7].	However,	we	are	the	first	to	use	reinforcement	learning	to	study	defensive	
strategies	in	the	NBA.	Our	use	of	reinforcement	learning	(as	opposed	to	supervised	or	imitation	
learning)	allows	us	to	learning	new	strategies	for	double	teaming,	as	opposed	to	predicting	
expected	outcomes	under	current	play.	Our	work	represents	a	step	toward	a	more	comprehensive	
understanding	and	evaluation	of	defensive	play.		

The	remainder	of	the	paper	is	organized	as	follows.	Section	2	details	the	proposed	methods	
including	how	we	define	states,	actions,	and	rewards.	Section	3	explains	our	evaluation	scheme,	
including	how	we	use	the	learned	networks	to	quantify	the	advantage	of	double	teaming.	In	
addition,	Section	3	presents	results	from	the	application	of	the	proposed	method	to	three	seasons	
worth	of	data,	summarizing	trends	across	the	league,	teams	and	players.	

2 Methods	
We	begin	with	a	brief	overview	of	reinforcement	learning,	introducing	definitions	and	notations	
used	throughout	the	paper.	We	then	present	our	proposed	method	for	learning	how	to	effectively	
double	team.	

2.1 Background	and	Notation	
Here,	we	briefly	review	the	reinforcement	learning	(RL)	framework;	for	an	in-depth	review	of	RL	
we	refer	the	reader	to	[12].	In	an	RL	setting,	an	agent	interacts	sequentially	with	an	environment,	
soliciting	a	reward.	This	is	commonly	modeled	using	a	Markov	Decision	Process	(MDP)	𝑀 =
𝒮,𝒜,𝒫, ℛ, 𝛾 	where	𝒮	is	the	state	space,	𝒜	is	the	action	space,	𝒫	is	a	transition	probability	function	
from	state	and	action	to	next	state,	ℛ	is	a	stochastic	function	from	𝒮×𝒜 → ℝ	and	𝛾 ∈ 0, 1 	is	the	
discount	factor	for	the	reward.	In	an	episodic	setting,	an	agent	observes	the	current	state	𝑠1 ∈ 𝒮,	
chooses	an	action	𝑎1 ∈ 𝒜,	and	then	transitions	to	𝑠134,	according	to	some	probability	distribution	𝒫51

6.	
In	addition,	the	agent	receives	an	instantaneous	reward,		𝑟1 ≔ ℛ(𝑠1, 𝑎1).	This	process	continues	until	
reaching	a	terminal	state	at	time	step	𝑇	(i.e.,	the	end	of	the	episode).		
	

In	this	setting,	the	agent	aims	to	maximize	the	expected	value	of	cumulative	discounted	reward	𝐺1 ∶=
𝛾1>1?@

1A1? 𝑟1.	An	agent	behaves	according	to	some	policy	𝜋	where	𝜋 𝑎 𝑠 ≔ 	𝒫51
6	The	optimal	state-
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action	value	function	𝑄D∗(𝑠, 𝑎)	is	the	expected	cumulative	reward	of	starting	in	state	𝑠,	executing	
action	𝑎,	and	then	following	the	optimal	policy	𝜋∗.	Formally,	𝑄D∗(𝑠, 𝑎) 	= 	max

D
𝔼6JKL:NOL∼D	 𝐺1 𝑠1 = 𝑠, 𝑎1 = 𝑎]	.	

In	addition	to	state-action	value,	we	define	optimal	state	value	𝑉D∗(𝑠) = 𝑚𝑎𝑥6	𝑄D
∗	(𝑠, 𝑎).	Finally,	we	

define	the	state-action	advantage	as	𝐴D∗(𝑠, 𝑎) 	= 	𝑄D∗(𝑠, 𝑎) 	− 	𝑉D∗(𝑠)	,	or	the	expected	difference	in	
cumulative	reward	had	𝑎	been	selected.		

In	the	next	section,	we	explain	how	we	use	this	framework	to	find	the	optimal	policy	for	double	
teaming.	We	begin	by	defining	the	set	of	actions	𝒜,	our	state	representation	𝒮,	and	the	reward	ℛ.		

2.2 Double	Teaming	with	an	RL	Framework	
Applied	to	player	trajectory	data,	the	RL	framework	considers	each	possession	as	an	episode.	The	
episode	begins	once	all	players	have	crossed	half	court	and	concludes	when	the	shot	clock	resets.	
We	discretize	these	episodes	into	1	second	windows.	From	the	defense’s	perspective,	at	each	
second,	the	team	(i.e.,	agent)	must	make	a	decision	(e.g.,	to	double	team	the	ball	handler	or	not).	
This	decision	can	depend	on	many	factors	including	the	status	of	the	game,	which	players	are	on	the	
court,	and	player	locations.	Ultimately,	this	sequence	of	decisions	results	in	an	outcome	
determining	the	total	cumulative	reward	(e.g.,	a	blocked	shot).	Intuitively,	if	the	defense	makes	a	
series	of	poor	or	sub-optimal	decisions,	the	offense	will	score,	and	the	resulting	reward	will	be	
lower	than	if	the	defense	had	made	better	decisions.	Below,	we	provide	additional	details	regarding	
how	we	i)	define	and	detect	actions,	ii)	handle	the	continuous	state	space	and	iii)	measure	reward.	

2.2.1 Action	Space	and	Action	Detector	
While	the	defense	is	faced	with	myriad	decisions	during	play,	we	
focus	on	the	decision	of	whether	or	not	to	double	team	the	ball	
handler.	We	define	a	discrete	action	space	based	on	the	location	of	
the	open	player.	We	discretize	the	court	into	19	different	regions,	in	
keeping	with	[1]	(Figure	1).	Given	this	court	discretization	and	the	
location	of	players	on	the	court,	we	label	each	1-second	window	
with	one	of	20	possible	actions.	The	defense	can	either	decide	to	
stay,	or	double	team	the	ball	handler.	Since	the	player	the	defense	
chooses	to	leave	open	can	be	in	any	one	of	the	19	regions,	this	
presents	20	possible	actions	in	total.	However,	for	any	given	state,	
only	a	subset	of	actions	are	valid,	since	it	is	infeasible	to	leave	an	
open	man	in	a	region	not	occupied	by	an	offensive	player.	Thus,	the	
set	of	feasible	actions	at	each	time	𝒜1 ⊂ 𝒜	depends	upon		𝑠1 ,	where	𝑎 ∈ 	𝒜1	if	and	only	if	𝑎	is	the	
null	action	(no	double	teaming)	or	𝑎	corresponds	to	leaving	an	open	man	in	a	region	occupied	by	an	
offensive	player	(excluding	the	ball	handler)	in	𝑠1 .		
To	detect	the	action	of	double	teaming	in	the	data,	we	developed	the	simple	rule-based	classifier	
described	below.	We	tried	using	the	`Who’s	Guarding	Whom’	system	to	detect	double	teaming	[2],	
but	ultimately	found	that	an	action	detector	tailored	to	the	specific	problem	of	double	teaming	was	
more	accurate.	The	classifier	looks	for	the	presence	of	at	least	two	defensive	players	within	a	radius	
of	the	ball	handler,	while	accounting	for	the	possibility	that	two	offensive	players	are	close	to	one	
another,	bringing	the	defense	close	(but	not	double	teaming).	We	summarize	this	rule	in	Figure	2.	
To	ensure	that	this	simple	rule	could	accurately	capture	double	teaming,	we	compared	its	
annotations	with	those	given	by	two	humans	on	a	random	subset	of	100	possessions.	We	found	that	
the	action	detector	performed	within	the	level	of	inter-rater	agreement,	see	Figure	2(c),	
demonstrating	that	it	is	a	reasonable	approach	to	detecting	double	teams.		

Figure	1.	We	discretize	the	half	
court	into	19	distinct	regions.	
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When	labeling	possessions	based	on	the	presence	of	double	teaming,	we	consider	those	
possessions	in	which	the	defense	selects	a	``double	team"	action	for	at	least	two	consecutive	1-
second	windows	as	double	teaming.	Note	that	this	does	not	necessarily	mean	the	defense	was	
doubling	for	two	seconds,	just	that	the	action	occurred	over	the	course	of	two	windows.	This	
eliminates	short-lived	``double	teams''	that	occur	during	screens	or	during	drives	to	the	basket.		

2.2.2 State	Representation	
The	decision	to	double	team	or	not	can	depend	on	many	factors.	We	try	to	account	for	as	many	as	
possible	by	considering	a	continuous	state	representation	that	encapsulates	player	trajectories,	
player	heights,	weights,	shooting	abilities,	current	state	of	the	game,	shot	clock,	and	game	clock.	As	
input	to	our	network,	we	use	both	images,	as	in	[3],	and	flat	features.		

Our	image	representation	includes	three	types	of	channels:	i)	one	court	channel	encoding	the	
region	number,	as	defined	in	Figure	1,	of	each	pixel,	ii)	11	trajectory	channels	(for	the	10	players	
and	ball),	and	iii)	five	offensive	player	shooting	percentage	channels,	each	of	size	47×50	in	the	pixel	
space	(i.e.,	the	half	court	discretized	by	square	feet).	Building	upon	work	by	Harmon	et	al.,	we	
convert	the	player	trajectories,	from	their	original	 𝑥, 𝑦 -coordinate	format	to	an	image	
representation.	For	each	player	on	the	court,	we	build	an	image	of	his	trajectory	over	a	1-second	
window.	The	pixel	value	for	a	player	location	exponentially	decreases	going	
back	in	time,	directly	encoding	temporal	information	into	the	image.	Finally,	
we	include	an	additional	image	channel	for	each	offensive	player	on	the	
court,	capturing	their	shooting	percentages	across	different	regions.	When	
estimating	shooting	percentages,	we	use	data	up	to	but	not	including	the	
current	game	so	as	to	respect	the	causal	ordering	of	events.	This	results	in	a	
sparse	17	channel	image	(as	opposed	to	a	standard	3	channel	RGB	image).	
The	channels	are	sorted	across	images	by	team	and	position	within	a	team	
to	preserve	image	semantics	across	examples	(i.e.,	the	1st	channel	
contains	the	trajectory	of	the	offensive	center	if	one	is	fielded).	A	sample	
trajectory	is	given	in	Figure	3.			

In	addition	to	these	image	inputs,	we	include	flat	features	that	do	not	have	a	spatial	component.	
These	flat	features	pertain	to	the	shot	clock,	game	clock,	quarter,	and	weight	and	height	of	each	
player	on	the	court.	Again,	we	order	the	player	features	according	to	player	team	and	position.	After	
binning	continuous	values	based	on	quintiles,	the	resulting	feature	vector	consisted	of	93	flat	
features.	These	were	fed	into	the	model	along	with	the	image	channel	input	(Figure	4).	

	

	Figure	3.	Trajectory	over	1	
second	of	play.	Each	color	
represents	a	unique	channel.	

	

 

Figure	2.	Identifying	double	teams.	In	(a),	we	find	two	defensive	players	within	the	defensive	radius	of	the	starred	player,	
removed	from	the	other	offensive	players	à	doubling.	In	(b)	one	of	the	defensive	players	is	within	the	defensive	radius	of	
another	offensive	player	à	not	doubling.	In	(c)	we	see	that	the	model	agrees	with	the	human	annotators	more	often	
(72.3%	and	73.2%)	than	the	humans	agree	with	each	other	(64.2%).	

(a) Doubling           (b) Not Doubling 

	 Annotator	1	 Annotator	2	 Auto	Detector	

Annotator	1	 1.000	 0.642	 0.732	
Annotator	2	 0.642	 1.000	 0.723	
Auto	Detector	 0.732	 0.723	 1.000	

	 (c) Proportion of agreement between annotators 
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2.2.3 Reward	
We	consider	a	reward	signal	based	on	the	points	obtained	over	a	possession.	In	our	setting,	only	the	
final	second	of	a	possession	is	associated	with	non-zero	reward.	By	removing	the	discount	factor,	
the	total	cumulative	reward	at	any	point	during	the	possession	is	equal	to	the	terminal	reward.	If	a	
foul	occurs,	we	include	the	result	of	the	free	throws	in	our	reward.	Because	we	consider	each	
possession	from	the	perspective	of	the	defense,	the	reward	equals	the	negative	points	scored	and	
takes	on	values	in	the	set	{0, −1, . . ., −5},	the	closer	to	0,	the	better.	

2.3 Model	Architecture	and	Training	
Given	the	RL	framework	discussed	above,	we	train	a	state-action	value	estimator	to	learn	a	
mapping	𝑠 → 𝑄D 𝑠, 𝑎 	for	all	actions	𝑎 ∈ 𝒜.	We	use	a	dueling	convolutional	neural	net	as	our	
estimator	[16].	Such	architectures	natively	separate	state-value	and	action	advantage.	They	have	
been	demonstrated	to	be	a	competitive	architecture	for	vision-based	control	[5].	

State-action	networks	learn	the	Q-values	for	each	action	𝑎1	given	a	state	𝑠1 ,	at	some	particular	time	
step	𝑡	by	minimizing	the	temporal	difference	error	across	the	𝑁	episodes	in	the	training	set	
{𝑠4_ , 𝑎4_ , 𝑟4_, … , 𝑠@a>4

_ , 𝑎@a>4
_ , 𝑟@a>4

_ , 𝑠@a
_ }_A4b :	

ℒ = [𝑄D∗(𝑠1_, 𝑎1_)
@a>4

1A4

− 	 𝑟1_ + 	𝑉D
∗ 𝑠134_ ]f

b

_A4

	

	

Figure	4.	NBNet	architecture.	We	use	a	convolution	neural	network	(ConvNet)	to	extract	visual	features	from	the	
court	together	with	a	fully	connected	network	to	incorporate	flat	features.	The	final	hidden	layers	are	split	into	
value	and	advantage	streams	that	output	𝑉(𝑠)	and	𝐴(𝑠, 𝑎)	respectively,	with	output	𝑄(𝑠, 𝑎) 	= 	𝑉(𝑠) 	+ 	𝐴(𝑠, 𝑎).		
FC:	fully	connected	
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Where	𝜋∗	represents	the	policy,	and	both	𝑄D∗ 	and	𝑉D∗ 	are	estimated	using	the	network	(though	to	
improve	stability	we	estimate	𝑉D∗ 	using	a	periodically	cached	version	of	our	network	as	in	[10]).	
Given	the	training	data,	we	learn	a	state-action	network	using	a	policy	that	is	greedy	with	respect	to	
the	value	estimates:		

𝜋∗ 𝑎 𝑠1 =
1, 𝑖𝑓	a = argmax

6∈𝒜J

𝑄D∗(𝑠1, 𝑎)	

0,																																				otherwise	
	

				
𝑉D∗(𝑠134) 	= max

6	∈𝒜JKL
𝑄D∗(𝑠134, 𝑎)	

The	feasible	action	set	𝒜1	is	used	both	for	policy	predictions	and	value	estimation.	This	approach	of	
policy	learning	via	value	estimation	is	called	Q-learning.	Given	unlimited	exploratory	training	data,	
such	a	policy	is	provably	optimal	for	any	finite	size	MDP	[17].	However,	our	use	of	historical	data	
means	we	cannot	sufficiently	explore	the	state-action	space	to	make	such	guarantees.	Training	deep	
neural	networks	with	Q-learning	was	first	shown	to	be	viable	for	vision-based	control	in	[10].	To	
improve	the	Q-value	estimates,	we	use	double	Q-learning	as	described	in	[14].	An	overview	of	our	
full	NBNet	architecture	is	given	in	Figure	4.	

3 Evaluation	and	Results	
We	trained	and	evaluated	on	data	collected	from	the	SportVU	optical	tracking	dataset	augmented	
with	play-by-play	data.	These	data	have	been	previously	described	by	[8,9,18].	We	considered	data	
from	the	three	most	recent	seasons,	totaling	875,412	possessions.	For	our	analysis,	we	excluded	
possessions	in	which	not	all	of	the	players	cross	half-court,	since	these	represent	transition	plays	in	
which	the	use	of	double	teaming	may	differ.	This	results	in	a	final	set	of	643,147	possessions.	In	our	
first	set	of	results,	we	summarize	the	application	of	our	action	detector	to	the	data.	We	identify	how	
often	teams	use	the	double	team,	and	when	and	where	it	appears	most	effective.	We	then	move	on	
to	present	an	in-depth	analysis	of	the	learned	value	function,	demonstrating	the	promise	of	an	
observational	RL	framework	for	value	estimation.		

3.1 Observational	Analysis	
We	labeled	each	of	the	643,147	possessions	as	Double	if	we	detected	that	the	defense	double	
teamed	the	ball	handler	(based	on	our	action	detector,	Section	2.2.1)	for	at	least	2	consecutive	

seconds,	and	No	Double	otherwise.	In	total,	4.8%	were	labeled	
as	Double.	This	fraction	varied	across	teams	from	3.8%	
(Portland)	to	6.7%	(Milwaukee).	The	majority	of	teams	tend	
to	double	team	the	ball	handler	between	4-5%	of	possessions.	

After	labeling	each	possession,	we	grouped	possessions	by	
outcome.	Each	possession	fell	into	one	of	six	possible	
categories:	2pt	made/missed,	3pt	made/missed,	foul,	or	
turnover.	Double	teaming	is	inherently	a	high-risk,	high-
reward	decision.	The	distribution	over	outcomes	associated	
with	double	teaming	reflects	this	trade	off	(Figure	5).	Overall,	
double	teaming	results	in	a	significantly	lower	field	goal	
percentage	for	the	offense.	However,	this	comes	at	the	
expense	of	a	significantly	greater	likelihood	of	the	possession	
ending	in	a	foul.	

Figure	5.	Relative	frequencies	of	outcomes	
for	possessions	in	which	the	ball	handler	
was	and	was	not	double	teamed.	Error	
bars	correspond	to	empirical	95%	
confidence	intervals.	
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Next,	we	looked	at	the	data	from	the	perspective	of	the	ball	handler,	
investigating	what	actions	were	taken	immediately	following	a	double	
team	and	the	outcome.	Across	the	NBA,	when	double	teamed	ball	
handlers	predominantly	tend	to	pass	or	dribble	the	ball,	shooting	only	
6.2%	of	the	time	when	double	teamed	(Figure	6).		

To	assess	which	offensive	players	perform	best	when	double	teamed,	we	
measured	a	team's	overall	points	per	possession	when	a	given	player	was	
on	the	court	and	compared	this	to	the	team's	points	per	possession	(ppp)	
when	that	given	player	was	double	teamed.	Here,	we	restricted	our	
analysis	to	players	who	faced	at	least	150	double	teams.	Among	guards,	
John	Wall	emerged	as	the	most	effective	player	against	the	double	team.	
On	average,	Wall's	team	scored	1.07ppp	when	he	was	double	teamed	

versus	0.89ppp	when	he	was	not.	This	increase	may	reflect	Wall's	ability	to	effectively	utilize	the	
open	man.	Lou	Williams	is	the	guard	most	negatively	affected	by	the	double	team	(0.68ppp	vs.	
0.95ppp).	Among	forwards,	Rudy	Gay	comes	up	as	most	effective	(0.86	ppp	vs.	0.98ppp).	On	the	
other	end	of	the	spectrum,	Kevin	Durant	is	most	negatively	affected	(0.99	ppp	vs.	0.90	ppp).		

In	Figure	7,	we	plot	the	average	
ppp	for	each	of	the	above	
players,	categorized	by	the	
decision	the	offensive	player	
made	once	they	were	double	
teamed.	It	appears	more	
beneficial	for	the	player	to	pass	
the	ball	rather	than	keep	the	ball	
themselves.	Despite	this	fact,	
players	do	not	always	make	this	
decision	as	seen	in	Figure	6.	

In	addition	to	considering	what	
the	offense	does	when	faced	with	
a	double	team,	we	also	looked	at	how	the	defense	fares.	We	examined	all	tandems	with	at	least	50	

double	teams	over	the	last	three	seasons.	Figure	8	illustrates	
the	relationship	among	field	goals,	fouls	committed,	and	
turnovers	forced	for	each	of	these	pairs.	The	pairing	of	Kyle	
Lowry	and	Jonas	Valanciunas	led	all	pairings	in	terms	of	fewest	
points	allowed	per	possession	(0.64),	followed	by	Chris	Paul	
and	DeAndre	Jordan	(0.70)	and	Klay	Thompson	and	Draymond	
Green	(0.74).	The	tandem	of	Ricky	Rubio	and	Karl-Anthony	
Towns	was	most	proficient	at	forcing	turnovers	out	of	the	
double	team--21.4%	of	their	double	teams	resulted	in	a	
turnover.	

The	results	from	this	empirical	analysis	begin	to	shed	light	on	
the	tough	decisions	teams	must	make	with	respect	to	when	and	
whom	to	double	team.	In	the	next	section,	we	take	a	closer	look	
at	the	value	behind	the	decisions	teams	are	making,	while	
controlling	for	additional	factors	through	an	RL	approach.		

Figure	6.	Once	double	
teamed,	a	player	can	
choose	to	either	pass,	
shoot,	or	dribble	the	ball,	
but	most	choose	to	pass	

Figure	7.	Expected	points	per	possession	when	players	decide	to	
dribble	or	pass	when	double	teamed.		

Figure	8.	Relationship	between	
Field	Goals,	Turnovers,	and	Fouls	
(indicated	by	dot	size)	for	tandems	
with	at	least	50	double	teams.	
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3.2 Reinforcement	Learning	Analysis	
In	this	section,	to	control	for	the	effect	of	the	offensive	team,	we	consider	how	teams	defend	against	
a	single	team.	We	focus	on	the	Cleveland	Cavaliers,	since	the	Cavs	i)	had	a	lot	of	data	(so	that	we	
could	learn	a	policy),	ii)	had	a	relatively	stable	roster	(so	that	its	offensive	strategy	did	not	vary	too	
much)	and	iii)	are	strong	offensively	(so	that	good	defense	is	necessary).	

Focusing	on	just	offensive	possessions	for	the	Cleveland	Cavaliers	resulted	in	22,695	possessions.	
After	splitting	the	data	randomly	on	possessions,	we	trained	the	network	on	70%	of	the	data,	
validated	our	results	on	10%,	and	performed	our	final	evaluations	on	the	remaining	20%.	Applied	
to	a	held-out	possession	𝜏_ = (𝑠4_ , 𝑎4_ , 𝑟4_, 𝑠f_ , 𝑎f_ , 𝑟f_, … , 𝑠@a

_ ),	at	each	time-step,	𝑡,	the	learned	network	
estimates	the	Q-values,	𝑄D∗(𝑠1_, 𝑎)	for	all	𝑎 ∈ 	𝒜1	for	each	of	the	feasible	actions	given	the	state	
representation	𝑠1_ .		

The	quantitative	evaluation	of	policies	on	data	collected	off-policy	is	challenging.	While	several	
recent	advances	have	been	made	in	methods	for	off-policy	evaluation	[6,	11],	they	require	that	the	
behavior	policy	have	a	known	distribution.	This	does	not	hold	in	our	scenario,	and	assuming	a	
deterministic	behavior	policy	would	severely	limit	our	evaluation	data	(requiring	that	we	evaluate	
only	on	trajectories	that	already	follow	𝜋∗).	Since	we	do	not	correct	for	changes	to	the	data	
distribution	generated	under	the	learned	policy,	the	Q-values	we	report	when	following	𝜋∗	are	
biased	[6,	13].	Despite	this	fact,	we	still	observe	that	our	learned	policy	correlates	with	an	increased	
expected	reward.	19	of	the	20	actions	correspond	to	double	teaming.	Because	of	this,	the	learned	
policy	suggests	double	teaming	far	more	often	than	not	(in	90.6%	of	possessions).	To	mitigate	this	
effect,	we	suppressed	the	selection	of	a	double	team	action	unless	its	Q-value	exceeded	that	of	the	
man-to-man	action	by	at	least	0.2.	We	selected	this	threshold	using	the	validation	data,	verifying	
that	the	average	Q-values	still	correlated	with	observed	outcomes.	Once	we	applied	this	post-
processing	step,	the	learned	policy	suggested	double	teaming	in	29.29%	of	possessions.	This	is	
closer	to	the	observed	double	teaming	ratio	of	33.92%	when	double	teaming	is	defined	on	a	per-
second	basis.	

How	predictive	are	the	Q-values?	Given	a	set	of	4,482	held-out	possessions,	we	evaluated	the	
accuracy	of	the	learned	network	by	comparing	the	estimated	Q-values	associated	with	the	action	
taken	at	each	time	step	𝑡𝑄𝜋∗(𝑠𝑡, 𝑎𝑡),	to	the	observed	outcome	(i.e.,	points	scored	by	the	offense).	That	
is,	we	computed	𝑞6tu(𝑖) =

4
@_

𝑄D∗(𝑠1_, 𝑎1_)
@a
1A4 	for	each	possession	𝑖	If	the	network	is	a	good	estimator,	

then	a	higher	𝑞6tu	should	be	associated	with	a	lower	number	of	points	scored	(since	this	represents	
a	good	outcome	for	the	defense).	In	Figure	9	we	plot	𝑞6tu	against	the	observed	outcome	across	
possessions	in	the	test	set.	For	clarity,	we	binned	the	averaged	Q-values	into	deciles	and	report	the	

Figure	9.	We	look	at	the	estimated	Q-
values	averaged	over	the	course	of	a	
possession	compared	to	the	observed	
number	of	points	scored	at	the	end	of	the	
possession.	As	expected,	we	see	a	
downward	trend	where	a	defensive	`stop'	
corresponds	to	higher	Q-values.	This	has	
correlation	-0.08	(p	<	0.001)	
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average	score	within	each	decile.	Note	that	
the	regression	line	is	fit	to	the	underlying	
data,	not	the	bin	values.	We	observe	the	
expected	downward	trend.	That	is,	a	higher	
average	Q-value	is	associated	with	fewer	
points	scored	(i.e.,	a	good	defensive	
outcome).	We	also	observe	a	tight	clustering	
of	mean	Q-values	within	the	range	-1	to	0.	
This	indicates	that	our	Q-values	are	
positively	biased	relative	to	the	expected	
cumulative	reward,	as	the	average	reward	is	
around	-1.4.	This	upward	bias	of	Q-values	is	
a	well-known	problem	in	Q-learning	[4].	
Despite	this	bias,	the	Q-values	are	predictive	
of	reward,	a	highly	encouraging	result.	In	
addition,	we	observed	that	the	Q-values	are	
associated	with	higher-level	measures	of	
team	performance.	Figure	12	shows	a	
positive	correlation	between	team-wise	𝑞6tu	
and	win	percentage	against	the	Cavs.																																																																		
Visualizing	the	Learned	Policy.	Once	we	
established	that	the	estimates	for	the	Q-
values	are	reasonable,	we	performed	both	
qualitative	and	quantitative	analyses	of	the	
learned	policy.	In	particular,	again	on	held-
out	data,	we	compared	the	distribution	over	
actions	suggested	by	the	learned	policy	𝜋∗	to	
the	empirical	distribution	of	observed	
actions.	That	is,	for	each	observed	state	and	
action	pair,	(𝑠1_, 𝑎1_),	we	compare	how	𝑎1_ 	
differs	from	argmax

6
𝑄D∗	(𝑠1, 𝑎).		

To	try	to	get	at	the	question	of	how	a	team	
might	improve	their	double	teaming	
strategy,	we	focus	on	double	teaming	Kyrie	
Irving.	We	looked	at	all	instances	in	which	
Kyrie	had	the	ball	around	the	perimeter	(at	
least	15	feet	from	the	basket).	For	each	time	
step	that	meets	these	criteria,	we	considered	
the	observed	action	versus	the	action	
suggested	by	𝜋∗.	For	those	cases	in	which	
the	defense	decided	to	double	team	Kyrie,	
Figure	10	shows	the	locations	of	the	open	
players	(left),	and	where	the	open	player	
should	have	been	had	the	teams	been	acting	

according	to	𝜋∗	(right).	We	observe	the	counter-intuitive	result	that	it	is	better	to	leave	an	open	
man	in	the	paint	than	in	the	back.	This	could	suggest	that	it's	important	for	the	double	teamer	to	

Figure	10.	Observed	(left	figures)	and	learned	policies	
(right	figures)	for	double	teaming	Kyrie	Irving	at	the	3-
point	line.	The	top	figures	depict	possessions	when	Kyrie	is	
at	the	left	wing	of	the	3	point	line,	while	the	bottom	figures	
depict	cases	when	Kyrie	is	at	the	right	wing	of	the	3	point	
line.	The	observed	and	learned	policies	differ	significantly.	
The	observed	policy	demonstrates	many	open	players	are	
left	in	the	back,	while	the	learned	policy	suggests	the	extra	
defender	should	come	from	the	inner	court.	Both	the	
observed	and	learned	policies	demonstrate	significant	
asymmetry,	showing	that	it's	better	to	leave	an	open	
player	away	from	the	ball	handler	

Figure	11.	Percentage	of	time	we	observe	teams	double	
teaming	individual	players	(obs)	and	percentage	of	time	
our	learned	policy	suggests	double	teaming	those	same	
players	(learn).	
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position	himself	such	that	he	blocks	a	potential	pass	to	the	open	man.	The	fact	that	the	network	
learns	to	capitalize	on	the	asymmetry	of	the	situations,	as	evidenced	by	values	within	the	paint,	
indicates	the	policy	is	responding	to	positional	information	in	𝑠1 .		

In	addition	to	where	to	leave	the	open	man,	we	can	look	how	often	we	should	be	double	teaming	
certain	players.	Figure	11	shows	differences	in	double	teaming	trends	across	players	with	the	
observed	versus	learned	policy.	Our	learned	approach	is	more	hesitant	to	double	team	star	players,	
and	is	more	likely	to	double	team	role	players.		

	

	

Who’s	the	best	(and	who	could	improve)?	The	average	Q-value	associated	with	the	trajectory	of	
states	and	actions	for	a	possession	may	be	high	due	to	either	the	value	of	the	state,	or	the	advantage	
conferred	by	the	selected	actions.	For	example,	if	none	of	the	players	on	the	Cavs'	starting	line-up	
are	on	the	court,	then	the	Q-value	will	be	high	since	the	team	is	less	likely	to	score.	Thus,	we	
separate	out	the	advantage	from	the	Q-value,	shown	in	Figure	13.	The	ranking	in	the	plot	
corresponds	to	the	average	𝑞6tu	for	each	team.	We	only	consider	teams	who	played	the	Cavs	in	the	
playoffs,	since	this	provides	more	data	to	train	and	evaluate	on.	We	sort	the	graph	from	the	bottom	
to	the	top	(the	higher	the	better)	using	𝑞6tu	over	all	relevant	possessions.	The	left-most	bar	
corresponds	to	the	magnitude	of	average	advantage	for	each	team	(i.e.,	𝐴D∗(𝑠1, 𝑎1)).	The	right	
ranking	is	done	using	the	theoretical	optimal	performance	of	the	teams	(𝑉D∗(𝑠1)).	From	this	plot,	
we	observe	that	Chicago	and	Golden	State	are	currently	best	at	defending	against	the	Cavs,	while	
Indiana	has	great	potential	under	“optimal”	play.	Notably,	all	teams	can	improve	their	defense	
under	the	learned	policy.		

4 Conclusion	
In	this	paper,	we	developed	a	framework	for	studying	the	double	team	in	the	NBA.	Using	a	rule-
based	action	detector,	we	labeled	hundreds	of	thousands	of	possessions	from	the	last	three	seasons	
as	either	containing	a	double	team	or	not.	We	then	applied	a	deep	reinforcement	learning	approach	

Figure	13.	The	performance	and	potential	of	
teams	as	measured	by	𝑄D∗(𝑠1, 𝑎1).	The	leftmost	
bars	indicate	advantage,	the	left	ranking	is	done	on	
Q-values,	the	right	is	done	on	potential	under	
optimal	play	(𝑉D∗)	

Figure	12.	An	analysis	of	each	team’s	empirical	performance,	as	measured	by	
win	percentage,	against	their	performance	as	evaluated	by	𝑄D∗ .	We	see	a	
strong	relationship	between	the	measures,	indicating	the	reliability	of	𝑄D∗ 	
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to	learn	a	mapping	from	court/game	configuration	to	the	action	that	minimizes	the	number	of	
points	scored	by	the	offense.		

There	are	several	limitations	to	our	analysis	due	mostly	to	the	fact	that	we	only	have	observational	
data.	First,	𝜋∗	learned	in	this	work	is	optimal	only	with	respect	to	the	state-action	pairs	explored	in	
the	data.	Second,	while	it	is	typical	to	evaluate	learned	policies	through	application	or	a	simulator,	
we	are	limited	to	evaluating	on	observed	state-action	pairs.	Third,	while	we	pooled	data	from	
across	three	seasons,	there	is	still	a	limited	number	of	observations	for	both	training	and	evaluation	
purposes.	Finally,	we	rely	on	a	rule-based	action	detector	for	identifying	double	teams	and	are	thus	
limited	by	the	accuracy	of	this	detector.	Future	work	could	improve	the	action-detector	which	
would	in	turn	impact	the	RL	results.		

This	work	represents	the	first	time	that	defensive	strategy	in	the	NBA	has	been	analyzed	using	an	
RL	framework.	Though	preliminary,	it	demonstrates	the	potential	for	algorithmic	analyses	of	the	
types	of	problems	plaguing	coaches.	While	we	chose	to	focus	on	doubling,	the	proposed	framework	
generalizes	beyond	this	specific	task.	By	modifying	the	defined	action	space,	the	same	approach	
could	be	used	to	answer	other	questions	about	offensive	and	defensive	strategy.	Going	forward,	the	
proposed	approach	could	be	applied	to	player	tracking	data	across	several	different	settings	to	
study	sequential	decision	making	in	the	NBA.	
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